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Abstract

Many kinds of economic behavior appear to be governed by discrete and occasional indi-

vidual choices. Despite this, econometric partial adjustment models perform relatively well

at the aggregate level. Analyzing the classic employment adjustment problem, we show

how discrete and occasional microeconomic adjustment is well described by a new form of

partial adjustment model that aggregates the actions of a large number of heterogeneous

producers facing fixed costs of factor adjustment. In the market equilibrium of this model,

employment responses to aggregate disturbances include changes both in a target employ-

ment selected by establishments and in the measure of establishments actively adjusting

to this target. Yet the model retains a partial adjustment flavor in its aggregate responses.

Previous research involving discrete factor adjustment has been conducted almost exclu-

sively under the assumption of exogenous prices, given the complications presented by

nontrivial heterogeneity in production. We demonstrate how such complications can be

limited, allowing both general equilibrium analysis and the convenience of linear solution

methods. We also show how our framework is easily generalized to accomodate persistent

idiosyncratic shocks. This generalization allows both greater consistency with the micro-

economic dynamics of factor adjustment, as well as application to a much broader set of

questions involving discrete individual choices, within a tractable equilibrium model.



1 Introduction

In many contexts, actual factor demands clearly involve complicated dynamic elements

absent in static demand theory. For example, empirical studies of the market demand for

labor typically find that lags, either of demand or of the determinants of demand, con-

tribute substantially to the explanation of employment determination. The most frequent

rationalization of such lags is that individual plants face marginal costs that are increas-

ing in the extent of adjustment, leading them to choose partial adjustment toward the

levels suggested by static demand theory. Many empirical studies also indicate, however,

that the partial adjustment model is inconsistent with the behavior of individual plants

or firms. For example, Hamermesh (1989) shows that individual plants undertake discrete

and occasional workforce adjustments rather than the smooth changes implied by partial

adjustment. Nonetheless, the model continues to be a vehicle for applied work, essen-

tially because it is a tractable way of capturing some important dynamic aspects of market

demand. It is frequently thus employed in an apologetic manner, with the researcher

suggesting that it is a description of market, rather than individual, factor demand.1

We present a generalized partial adjustment model in which individual production units

adjust in a discrete and occasional manner, yet there is smooth adjustment at the aggregate

level. Specifically, individual units face differing fixed costs of adjustment, so the timing

of their adjustments is infrequent and asynchronized while aggregation across plants leads

to a smooth pattern of aggregate factor demand well-approximated by the standard par-

tial adjustment model. Our exposition of this model’s relation to the traditional model

commonly used in empirical work is unique to this paper.

Our basic framework is sufficiently tractable that it has already been applied to ex-

amine several topics, among them price adjustment and capital investment.2 Here, we

apply it to employment which, relative to the investment application, requires a different

timing to trace the resulting distribution of production. We provide the first comprehen-

sive presentation of the framework so that researchers may conveniently adapt it to study

other problems. To facilitate its broad application, we then extend the method to allow

for persistent idiosyncratic shocks.

Our model provides a microeconomic foundation for the variety of plant-level adjust-

ment examined in the empirical work of Caballero and Engel (1992, 1993) and Caballero,

1See, for example, Kollintzas (1985).
2Dotsey, King and Wolman (1999) use the framework to analyze price adjustment; Thomas (2002) uses

it to examine investment.
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Engel, and Haltiwanger (1997). There, individual production units are assumed to adjust

employment probabilistically, with adjustment probabilities being a function the difference

between a target level of employment and actual employment. Aggregating from such

adjustment hazard functions, which are their basic unit of analysis, they examine the im-

plications of the resulting state-dependent adjustment behavior for aggregate employment

demand dynamics. In the absence of a microeconomic foundation for such probabilistic ad-

justment, Caballero and Engel (1993, p. 360, paragraph 2) explain that they “trade some

deep parameters for empirical richness.” In contrast, we explicitly model the plant’s adjust-

ment decision as a generalized (S, s) problem and derive the adjustment hazard functions

that are the starting point of previous research.3

One key stylized fact uncovered in the empirical literature is that an important route

through which aggregate shocks affect aggregate employment is by changing the fraction

of plants that choose to adjust. Accordingly, we develop a model where the aggregate

adjustment rate is an endogenous function of the state of the economy. While our gener-

alized model is not observationally equivalent to the traditional partial adjustment model

with time-invariant aggregate adjustment rates, impulse responses establish that it retains

the basic features of gradual partial adjustment. Another distinguishing feature of our

theoretical approach is that it is convenient to undertake generalized (S, s) analysis in a

general equilibrium environment, so that the influence of aggregate shocks on equilibrium

adjustment patterns may be systematically studied. Finally, our approach is sufficiently

tractable so as to accommodate additional sources of heterogeneity. Thus, beyond achiev-

ing consistency with the stylized facts highlighted here, it naturally extends to allow for

the richer heterogeneity of actions that is essential in matching other aspects of the mi-

croeconomic data on factor adjustment. Moreover, this generalization to include discrete

individual adjustments alongside persistent idiosyncratic elements makes our framework

amenable to a broader set of applications beyond those considered thus far.

The organization of this discussion is as follows. Section 2 briefly reviews the essential

properties of the standard partial adjustment model, and section 3 describes the evidence on

microeconomic adjustment patterns that the standard model fails to explain. Next, section

4 develops a model that is consistent with the observation that individual establishments

hire varying amounts of labor in discrete and occasional episodes, and it illustrates a

resulting hedging effect on the demand for labor. Our model makes the timing of discrete

individual employment changes endogenous by assuming that plants face fixed costs of

3Generalized (S, s) models were first studied by Caballero and Engel (1999) to explain the observed
lumpiness of plant-level investment demand.
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adjustment that are random across both time and plants. Establishments respond to this

by adopting generalized (S, s) decision rules with respect to labor. At the same time, the

framework is readily embedded within a fully specified general equilibrium macroeconomic

model, which allows us to examine the influence of deep parameters on the adjustment

process. Moreover, with a large number of plants, the model is similar to the traditional

partial adjustment model in that it yields a smooth market labor demand. We illustrate

several properties of our generalized partial adjustment model in section 5 through a series of

numerical examples.4 Beyond its consistency with the evidence on employment adjustment

in section 3, the model is also distinguished by its potential to reproduce the sharp changes

in market employment demand found in the data during episodes involving large changes

in productivity.5 Moving from our market demand examples, we provide counterpart

results that illustrate the role of equilibrium in shaping the aggregate response to shocks.

Finally, section 6 demonstrates how our framework is extended to accommodate persistent

differences in productivity across establishments, and section 7 concludes.

2 Standard partial adjustment

The standard partial adjustment model relates current employment, Nt, to target or

desired employment, N∗
t , through Nt−Nt−1 = κ[N∗

t −Nt−1], where κ ∈ (0, 1) is the fraction
of the gap closed in the period. This specification implies the influence of past actual or

desired employment on current employment,

Nt = κN∗
t + (1− κ)Nt−1 = κ

∞X
j=0

(1− κ)jN∗
t−j . (1)

As shown by Sargent (1978), this empirical partial adjustment model may be derived as the

solution to a firm’s dynamic profit maximization problem under the assumption that there

4Our model is distinguished from earlier generalized cost of adjustment models, as summarized, extended
and critiqued in Mortensen (1973), in that it suggests very different dynamics at the establishment-level.
Nonetheless, because our model is essentially one with many dynamically related factor demands, it is
capable of generating some of the aggregate dynamics that motivated researchers in this earlier area. For
example, under unrestricted parameters, interrelated factor demand models were found to be consistent
with oscillatory approaches to the long-run position. Our model can also generate such rich dynamics,
although it does not do so under the parameters selected here.

5This is because the economywide rate of adjustment implied by our model varies with aggregate con-
ditions. The traditional model under-predicts employment changes during such episodes precisely because
the adjustment rate there is constant.
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are quadratic costs of adjusting the workforce. In the absence of costly adjustment, assume

that the firm’s workforce declines at the rate d ∈ [0, 1) due to quits or mismatches. If et
employees are hired at time t, then Nt = (1− d)Nt−1+et, and the cost of the workforce ad-
justment is Ξ (et) = B

2 e
2
t , where B > 0.6 Let zt reflect current productivity, and wt be the

real wage, (both serially correlated random variables known at date t), and let production

be f(Nt, zt). Discounting future earnings by β ∈ (0, 1), the firm chooses {Nt, et}∞t=0 to max-
imize its expected present discounted value, E

hP∞
t=0 β

t
³
f(Nt, zt)−Ξ (et)−wtNt

´
| z0, w0

i
,

subject to Nt = (1− d)Nt−1 + et and given initial employment N−1. If the production
function is quadratic in employment, it is straightforward to show that

N∗
t = [Et

∞X
j=0

(β/κ)j(χaat+j − χwwt+j)], (2)

demonstrating that the presence of lags in employment implies leads under rational expec-

tations, as stressed by Sargent (1978).7

The key implications of the model are: (i) current employment, Nt, is directly re-

lated to lagged employment, Nt−1, because adjustments are costly, and (ii) expectations of
future wages and productivity influence current employment through the target, N∗

t , be-

cause, given adjustment costs, its choice will in part determine future employment. Taken

together, these features imply that adjustment costs dampen the response to changes in

current wage and productivity and yield smooth, gradual changes in employment over time.

3 Disconcerting evidence

While the traditional partial adjustment model offers a tractable framework with which

to study gradual aggregate labor adjustment, there is considerable empirical evidence to

suggest that the model is not consistent with the behavior of individual production units.

This evidence suggests a number of stylized facts about individual and aggregate adjust-

ment that we summarize here.

Stylized fact 1: Adjustment at the plant level is discrete, occasional and asynchronous.

Hamermesh (1989) examines monthly data on output and employment between 1983 and

1987 across seven manufacturing plants. For each plant, output fluctuates substantially

6This captures the idea that the firm’s marginal adjustment cost is rising in the extent of employment
adjustment; the same idea is incorporated in alternative adjustment cost functions used in applied work.

7 In (1) and (2), the parameters κ, χa and χw depend on the adjustment cost parameter B, the discount
factor β and the parameters of the production function.
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over the sample. Employment exhibits long periods of constancy broken by infrequent and

large jumps at times roughly coinciding with the largest output fluctuations. Hence, the

plant data are not consistent with the smooth employment adjustment that would arise

from convex adjustment costs.

Stylized fact 2: Aggregates exhibit smooth and partial adjustment. Hamermesh (1989)

also examines the behavior of the aggregate of his seven manufacturing plants. He finds

that fluctuations in aggregate employment resemble the dynamics of aggregate output and

appear consistent with smooth adjustment behavior of aggregates. More specifically, he

argues that the standard partial adjustment model works quite well at the aggregate level,

even though it does not describe the behavior of individual production units.8

Stylized fact 3: Adjustment hazards depend on aggregate conditions. Following the

econometric literature on discrete choices, an adjustment hazard typically refers to the

probability that a production unit will undertake a discrete change, with this probability

depending on the position of the unit’s state variable relative to some target value. Ca-

ballero and Engel (1993) construct a general framework for studying aggregate employment

changes that can incorporate a variety of assumptions about how adjustment hazards are

related to aggregate conditions. Using U.S. manufacturing data from 1961 through 1983,

they examine the dynamics of aggregate employment changes under two alternative speci-

fications for the hazard function: (1) a benchmark case with a time-invariant, flat hazard,

which corresponds to the traditional partial adjustment model (as shown by Rotemberg

(1987)) and (2) an alternative hazard model involving higher moments of the cross-sectional

distribution of firms’ ‘disequilibrium’ levels, reflecting state-dependent adjustment behav-

ior. They find large increases in explanatory power for aggregate employment changes in

moving from the constant hazard model to a generalized hazard structure and attribute

this to the effects of large aggregate shocks upon the employment hazard.

8Hamermesh compares log likelihood values from the estimation of a partial adjustment model based
on quadratic costs to those from a lumpy adjustment fixed-cost alternative. For plant-level data, the
latter achieves much larger likelihood values. Further, his switching model estimates of the percentage
‘disequilibrium’ required to induce adjustment are large, suggesting that plants vary employment with a non-
marginal adjustment only in the presence of substantial shocks to expected output. However, differences at
the aggregate level are too small to discriminate between models, as is the case when they are compared using
4-digit SIC data. Thus, lumpy adjustment behavior at the microeconomic level is obscured by aggregation.
From this and similar evidence, Hamermesh and Pfann (1996, page 1274) conclude that “observing smooth
adjustment based on data describing industries or higher aggregates over time is uninformative about firms’
structures of adjustment costs and in no way disproves the existence of lumpy costs.”
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Stylized fact 4: Adjustment hazards depend on measures of ‘micro gaps’. More direct ev-

idence on the importance of state-dependent adjustment hazards is provided by Caballero,

Engel and Haltiwanger (1997). Studying the direct relationship between the adjustment

hazard at the level of the individual production unit and the extent of that unit’s gap be-

tween current employment and a measure of desired employment, these authors show that

the adjustment hazard depends on the size of this discrepancy. They suggest that indi-

vidual units may face differential adjustment costs, so that the distribution of adjustment

costs governs the adjustment hazard.

Stylized fact 5: Aggregate shocks are much more important in accounting for aggregate

responses than are shifts in cost distributions. The empirical analysis of Caballero, Engel

and Haltiwanger (1997) also suggests that changes in the distribution of adjustment costs

are not central in explaining stylized fact 3. Rather, aggregate shocks induce changes

in hazards that are important for aggregates because they produce movements along the

micro-distribution of employment imbalances.

4 Generalized partial adjustment

A number of recent theoretical and empirical studies — notably those of Caballero

and Engel (1993) and Caballero, Engel and Haltiwanger (1997) — have argued for a richer

vision of the adjustment process that can generate the stylized facts discussed above. The

framework we develop exemplifies such a model. In particular, it delivers the implication

that, while individual establishments’ employment adjustments are discrete, (fact 1), their

asynchronous timing implies a smooth aggregate employment series similar to that implied

by the traditional partial adjustment model, (fact 2). Moreover, an individual production

unit’s probability of adjustment depends on a measure of the ‘gap’ between its current

employment and a notion of desired employment, (fact 4), and the model can produce

substantial responses of employment to aggregate shocks without relying on any shifts in

the distribution of adjustment costs, (fact 5). At the same time, our approach is readily

incorporated into a general equilibrium model, so that the relationship between adjustment

hazards and macroeconomic conditions can be formally established (fact 3).

We assume a large and fixed number of production units, each making discrete choices

about their employment adjustment over time. Production at the plant is constant returns

in labor and a fixed input, which we normalize to 1, f(nt, 1, zt).9 Any unit that does not

9The presence of the fixed input allows determination of the employment choice at the production unit.
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adjust its workforce sees it decay at rate d,

nt = (1− d)nt−1 + et, (3)

where et represents an active adjustment. We endogenize the timing of such adjustments by

introducing fixed costs that are stochastic across units, an approach adopted by Caballero

and Engel (1999) in their study of manufacturing investment.10 Within each date, any

individual plant faces a random cost ξ that it must pay in order to adjust its employment

prior to current production. This cost is drawn from a time-invariant distribution over

[0, B] that is summarized by the CDF G(ξ) and associated density g(ξ).

In the discussion that follows, we integrate our generalized partial adjustment approach

into a general equilibrium setting by imposing two restrictions on the prices faced by estab-

lishments within each date. First, asset-market clearing will require that all establishments

discount their future profit flows by households’ marginal rate of substitution between cur-

rent and future consumption, denoted here by β pt+1
pt
. Equivalently, establishments value

their current output by pt, the current marginal utility of consumption, and discount their

future values by the household subjective discount factor β. Next, the equilibrium wage,

wt, will equal households’ marginal rate of substitution between current leisure and con-

sumption, D2u(c,1−N)
D1u(c,1−N) . Provided that these restrictions are satisfied, the role of households

in the economy is effectively subsumed, and equilibrium allocations are retrieved as the

aggregate of establishments’ decisions.11

4.1 Adjustment probabilities

At the start of any date t, each production unit may be identified as a member of

a particular time-since-adjustment group, j, where j is the number of periods that have

elapsed since the unit’s last active employment adjustment. Let njt represent the start-of-

period labor stock associated with a member of time-since-adjustment group j, and let αjt
be a shorthand representing any such establishment’s probability of a current adjustment,

as perceived after the observation of the aggregate state but prior to the realization of

10The generalized adjustment model developed here has been used in several general equilibrium appli-
cations. Dotsey, King and Wolman (1999) study the dynamics of price adjustment, while Thomas (2002)
and Khan and Thomas (2003) investigate investment dynamics and Khan and Thomas (2004) use a similar
approach to study (S,s) inventory accumulation. In this study, we use linear approximation methods in the
tradition of Sargent (1978) to explore the general equilibrium dynamics, as do Dotsey, King and Wolman
(1999) and Thomas (2002).
11See Khan and Thomas (2003) for further explanation.
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adjustment costs.12 We limit the number of time-since-adjustment groups by restricting

the parameters of our model to ensure that there is some maximum nonadjustment horizon,

J , the number of periods within which all production units will adjust their employment

with probability 1: αJ = 1. This finite memory feature is useful in limiting the size of the

aggregate state vector, and will be discussed further below.

Let St denote the aggregate state of the economy determining prices and expectations.

We use the notation Vj(njt, St) to represent the production-time value of a plant that last

adjusted employment j periods ago and is entering current production with no change to

its start-of-period workforce njt. Next, we use V0(St) to denote the production-time value

of a plant that has paid its current fixed cost in order to adjust its employment prior to

production. Based on a comparison of these values, it is straightforward to characterize

the discrete adjustment decisions made by individual production units. Given its start of

period employment, njt, and the aggregate state, St, an establishment will actively adjust

its workforce if its current fixed cost, ξ, does not exceed the value of undertaking the

adjustment, that is, if V0(St)− Vj(njt, St) ≥ ξ.13

Because there is a large number of production units within each different time-since-

adjustment group, each group is characterized by a marginal plant that finds it just worth-

while to adjust. This marginal plant is associated with a threshold cost ξjt such that

ξjt = V0(St)− Vj(njt, St). (4)

All production units in the jth time-since-adjustment group with adjustment costs at or

below the threshold in (4) will choose to adjust. As a result, the fraction of plants adjusting

out of any particular group j, j = 1, . . . , J − 1, is given by

αjt = G(ξjt). (5)

From (4), note that these adjustment fractions are functions of the plant-level state vector,

(njt, St). We assume that the stochastic process for productivity, alongside the parameters

associated with production, fixed cost draws and household utility, are such that B <

V0(St)− VJ(nJt, St) for all relevant values of the vector (nJt, St). This assumption follows

naturally from B <∞ and ensures that αJ = 1.
12Except where necessary for clarity, we suppress commas in subscripts throughout this text.
13As will be made explicit below, St includes two endogenous vectors that together identify the start-of-

period distribution of plants over employments, alongside exogenous aggregate productivity, zt. We assume
zt follows a Markov process that is taken as given by all agents, as is the evolution of the endogenous aggre-
gate state, At, according to a mapping At+1 = Ψ(At, zt) that, in equilibrium, results from the aggregation
of individual actions.
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4.2 Production-time values

Having described the determination of endogenous adjustment probabilities as func-

tions of the production-time values associated with adjusting and nonadjusting plants, we

now state the functional equations that determine these values. We have been explicit

above in noting the dependence of prices and adjustment probabilities on the economy’s

aggregate state. Here, however, we suppress these dependencies to reduce equation length.

The value of a plant that is currently adjusting its labor is

V0(St) = max

µ
f(n0t, zt)− wtn0t + βE

"
pt+1
pt

h
α1,t+1V0

³
St+1

´
− ξ1,t+1 (6)

+(1− α1,t+1)V1

³
(1− d)n0t, St+1

´i
| St
#¶
,

where n0t is freely chosen, and α1,t+1 is given by (4) - (5) above.14 The right-hand side of

this Bellman equation involves three expressions. First, there is the flow of current profit.

Second, there is the expected discounted value of being a unit that adjusts next period,

which occurs with state-dependent probability α1,t+1 and implies an expected fixed cost

payment, ξ1,t+1, conditional on adjustment: ξ1,t+1 =
R G−1(α1,t+1)
0 xg(dx). Finally, there is

the value of being a unit that does not adjust next period, an outcome that occurs with

probability (1− α1,t+1).

For units choosing not to adjust their workforce, there are no further current decisions in

this simple model, although there would be in more elaborate settings allowing adjustments

on other margins, such as in hours-per-worker. The production-time value of a plant that

last adjusted j = 1, ..., J − 2 periods ago, and is not currently adjusting, is

Vj(njt, St) = f(njt, zt)− wtnjt + βE

"
pt+1
pt

h
αj+1,t+1V0

³
St+1

´
− ξj+1,t+1 (7)

+(1− αj+1,t+1)Vj+1

³
(1− d)njt, St+1

´i
| St
#
,

where αj+1,t+1 is given by (4) - (5), and ξj+1,t+1 =
R G−1(αj+1,t+1)
0 xg(dx). Any such plant

produces with its start-of-period labor njt, then moves to start next period as a member

of time-since-adjustment group j + 1 with workforce (1 − d)njt. In other respects, its

14As n0t is our model’s counterpart to target employment in the traditional model, we occasionally refer
to it as n∗t when making comparisons below.
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Bellman equation is analogous to that of current adjustors described above. Finally, the

production-time value of a nonadjusting plant that last adjusted J − 1 periods ago is just
as in (7), but reflects the certainty of employment adjustment in the next period:

VJ−1(nJ−1,t, St) = f(nJ−1,t, zt)−wtnJ−1,t + βE

"
pt+1
pt

h
V0

³
St+1

´
− ξJ,t+1

i
| St
#
. (8)

Before proceeding further, we should offer some comment on the time-since-adjustment

subscripts attached to the plant value functions above. So long as adjustment probabilities

are optimally chosen, it is clear that the plant-level state is fully captured by (njt, St),

and these subscripts are unnecessary. We have chosen to include them here to allow our

analysis to accommodate a special case that lies between our generalized model with state-

dependent adjustment probabilities and the traditional partial adjustment model char-

acterized by a time-invariant, flat adjustment hazard. This intermediate time-dependent

adjustment model replaces the endogenous determination of adjustment probabilities ac-

cording to (4) - (5) with a fixed vector of adjustment probabilities obtained from the

deterministic steady state of our state-dependent adjustment model. Thus, it resembles

the traditional model in that its adjustment hazard remains fixed over time, but differs in

that the hazard is not flat, but rather depends upon a unit’s time-since-last-adjustment.15

When our model is specialized to this case of time-dependent adjustment, j becomes a sep-

arate individual state variable determining the probability that a plant will be allowed to

adjust its employment, and the subscripts on our value functions are useful in accounting

for this.

4.3 Target employment

Adjusting production units exit the jth group for the adjustment group and choose

employment so as to maximize the right-hand side of (6), which results in an efficiency

condition of the following form:

D1f(n0t, zt)− wt + βE
hpt+1
pt

(1− α1,t+1) (1− d)D1V1

³
(1− d)n0t, St+1

´¯̄̄
St

i
= 0.

A notable feature of this condition is that the optimal employment decision on the part of

the adjusting production unit is independent of the length of time since it last adjusted and

15One may interpret each time-dependent adjustment probability αj as reflecting the probability that a
plant will be able to change its employment at zero fixed cost versus the probability that it will face an
infinite adjustment cost.
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the size of its workforce at the start of the period, since neither j nor njt enters into the

efficiency condition. This justifies our writing V0 above in the restricted form that omits

these factors. In addition, it implies a common employment adopted by all units adjusting

within the same date, and hence the common start-of-period workforce across all members

of any particular time-since-adjustment group.

Working with the value function in (7), we can determine the marginal value of addi-

tional workers:

D1Vj(njt, St) = D1f(njt, zt)−wt

+βE
hpt+1
pt

(1− αj+1,t+1) (1− d)D1Vj+1

³
(1− d)njt, St+1

´¯̄̄
St

i
.

These derivatives may be used iteratively to simplify the efficiency condition and derive an

alternative implicit expression for the optimal workforce chosen by an adjusting production

unit. In particular, n0t solves

D1f(n0t, zt)−wt+E
J−1X
j=1

hpt+j
pt
[β(1−d)]jϕj,t+j [D1f

¡
(1− d)jn0t, zt+j

¢−wt+j ] |St
i
= 0, (9)

where ϕj,t+j gives the probability that the adjusting unit will make no further adjustment

in the next j periods. That is, for j = 1, ..., J − 1,

ϕj,t+j ≡
jY

k=1

³
1− αk,t+k

´
=

jY
k=1

³
1−G(ξk,t+k)

´
. (10)

In practice, it is convenient to break the large forward-looking condition determining target

employment into J first-order stochastic difference equations. Defining ΩJt ≡ 0, equation
(9) is alternatively written as

D1f(n0t, zt)− wt + β(1− d)E
hpt+1
pt
Ω1,t+1 | St

i
= 0, (11)

where, for j = 1, ..., J − 1,
Ωjt ≡ (1− αjt)

³
D1f(njt, zt)−wt + β(1− d)E

hpt+1
pt
Ωj+1,t+1 | St

i´
. (12)

Notice that the condition in (9) may be explicitly solved for adjusting units’ optimal

labor demand in the special case of a Cobb-Douglas production function, y = znγ . There,

n0t =

⎡⎣EPJ−1
j=0

h
pt+j
pt

γβj(1− d)γjϕj,t+jzt+j
¯̄
St

i
E
PJ−1

j=0

h
pt+j
pt

βj(1− d)jϕj,t+jwt+j

¯̄
St

i
⎤⎦

1
1−γ

,
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which depends positively on current and expected future productivity and negatively on

current and expected future wages. Since this forward-looking labor demand is similar to

the behavior of target employment in the standard partial adjustment model of section 2,

we sometimes refer to it in this manner. However, it is worth stressing that the economic

reasons for this are somewhat different. In the standard model, the firm’s labor demand is

forward-looking because current adjustments affect the future costs that a firm encounters

when it adjusts. Here, by contrast, labor demand is forward-looking because a current

adjustor is aware that it may not adjust its employment again in the near future.

The condition in (9) also implies that our generalized adjustment model has a hedging

property arising due to forecasted future labor force departures. Assuming the economy’s

aggregate state is expected to be constant over time, it is straightforward to show that a

current adjustor will demand more employment than it would in a frictionless environment.

Suppressing changes in wages, interest rates and productivities, the target employment

solving (9) is a constant n∗. Let ns represent the static optimum satisfyingD1f(n
s, z)−w =

0 that would be chosen if the unit could adjust its employment in every period without

incurring fixed costs. Given concavity of f , [D1f((1−d)jn0, z)−w] < [D1f((1−d)j+1n0, z)−
w]. This implies the summation in (9) evaluated at n0 = ns is strictly positive. Moreover,

as both this sum and its preceding expression, D1f(n0, z) − w, are decreasing in n0, the

dynamic optimum, n∗, must exceed the static optimum.16

Production units hire more labor than they currently need to hedge against the possi-

bility that they may face relatively large adjustment costs deterring them from hiring again

in the immediate future. Further, n∗ will be larger the higher is this probability of future
nonadjustment; for instance, given d and α2 · · ·αJ−1 , a reduced probability of adjustment

in the first period after an adjustment, (lower α1) yields higher values for ϕ1, . . . , ϕJ−1 and
thus a higher value for the summation at any n0. The higher is the probability that the

unit will not restock employment in nearby dates, the stronger is the hedging motive.

4.4 Partial adjustment of market labor demand

The probabilistic approach to microeconomic employment adjustment that we have

constructed is consistent with the empirical evidence on rising employment adjustment

hazards. Moreover, the framework allows us to aggregate individual plants’ labor demand

and derive a simple expression for market labor demand. Since the economy is populated

16This steady-state exposition of the hedging motive relies on our assumption of a positive exogenous
separate rate. Had we assumed that d = 0, n∗ would, of course, be identical to ns.
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by a large number of production units, we can describe the distribution of plants in any

date t using the vector θt = [θ1t, ..., θJt], with each θjt representing the fraction of units

that begin the period having last adjusted j periods prior to the current date.17 Letting

ω0t ≡
PJ

j=1 θjtαjt denote total adjusting units in any date t, the elements of this vector

are as follow.18

θ1t = ω0,t−1 (13)

θjt = (1− αj−1,t−1) θj−1,t−1 for j = 2, ..., J . (14)

Market labor demand may then be represented as a moving average of the employment

actions of production units, with lag weights determined by adjustment fractions across

time-since-adjustment groups. Denoting the target value of employment that solves (9) as

n∗t , we have:

Nt = n∗t
JX
j=1

θjtαjt +
J−1X
j=1

θjt (1− αjt) d
jn∗t−j . (15)

This is the third result of our generalized partial adjustment model. The market’s

dynamic demand for labor describes aggregate employment as a weighted average of past

target employments, as in the traditional partial adjustment model (1). Consequently,

while the underlying plant-level demands are discrete and occasional, market demand varies

smoothly in every period. Further, since each target employment, n∗t−j , j = 1, . . . , J − 1,
involves expectations of future wages and productivities, so does market labor demand.

While equation (15) shows that our generalized partial adjustment model has a rep-

resentation similar to the traditional partial adjustment model, there are important dif-

ferences that eliminate exact aggregate equivalence. In particular, the lag weights here

vary over time, because they are composite functions of the adjustment rates αj , which

themselves are functions of plant and aggregate state variables, as consistent with stylized

fact 3. Thus, in contrast to the traditional model, our economywide rate of adjustment

responds to changes in aggregate conditions, including changes in economic policy.
17More precisely, the distribution is completely summarized by the vector θt together with a vector of

previous target employment levels [n∗t−1, ..., n
∗
t−J ] from which the current support is trivially retrieved. Note

that this time-since-adjustment approach allows us to capture the time-varying distribution of establish-
ments over employment levels using a linear systems solution method. We could instead directly track the
measure associated with each possible employment level. However, in that case, we would need to include
employments that at times have zero population, necessitating a nonlinear solution method as, for instance,
in the investment study of Khan and Thomas (2003).

18Given a fixed measure of production units, this overall adjustment rate is ω0t = 1−
J−1

j=1

ω0,t−jϕjt.
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4.5 Planning representation

The generalized partial adjustment model described above may be derived as the

solution to a single dynamic optimization problem, which makes the link to the standard

model of section 2 more direct. We briefly outline this reformulation to illustrate the

tractability of the approach and thus its suitability for applications.19 While we rely on

the equivalence between a social planning and competitive equilibrium solution in this

section, it is important to stress that the generalized partial adjustment approach can also

be applied to settings in which competitive equilibrium is not optimal.20

The aggregate representation consolidates the ownership of all plants, differentiated

by their time since last adjustment, j = 1, . . . , J , into a single entity, a planner acting

to maximize the expected discounted lifetime utility of a representative household. Using

the notation θt ≡ [θ1t, ..., θJt], nt ≡ [n1t, ..., nJt], and αt ≡ [α1t, ..., αJt] to describe the

economywide distribution of plants, employment, and adjustment fractions across groups,

the planner’s total available output is:

Yt = f(n0t, zt)
JX

j=1

θjtαjt +
J−1X
j=1

θjt(1− αjt)f(njt, zt). (16)

Total employment is an analogous sum of the employments of adjusting and non-adjusting

establishments,

ND
t = n0t

JX
j=1

θjtαjt +
J−1X
j=1

θjt(1− αjt)njt. (17)

Finally, economywide adjustment costs are

Qt =
JX
j=1

θjtΓ(αjt), (18)

where Γ(α) =
R G−1(α))
0 xg(dx) is the total volume of costs averaged across plants in a group

if fraction α of that group adjusts.

Given the current distribution of plants over time-since-last-adjustment groups, the

associated employment levels, and aggregate productivity, the planner chooses fractions
19Here, we have chosen to begin our discussion with a description of decentralized actions and now follow

with a planning representation. The reverse ordering would have been equally straightforward, which
emphasizes the flexibility of the approach. The representation is selected according to its convenience in
application.
20 In its application to the analysis of price adjustment by Dotsey, King and Wolman (1999), for example,

the presence of monopolistic competition means that equilibrium is not optimal.
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of plants adjusting (αjt)J−1j=1 and optimal employment for those that are adjusting their

workers, n0t, which together determine the next period distribution of plants, θt+1 and the

household’s current consumption and work hours. The planner’s problem is:

W (θt,nt, zt) = max
Dt

Ã
u(ct, 1−Nt) + βEW (θt+1,nt+1, zt+1 | θt,nt, zt) (19)

+λt[Yt −Qt − ct]

+wtλt[Nt −ND
t ],

+s0tλt

h JX
j=1

θjtαjt − θ1,t+1

i

+
J−1X
j=1

sjtλt

h
θjt(1− αjt)− θj+1,t+1

i!

subject to nj+1,t+1 = (1 − d)njt, for j = 0, . . . , J − 1, and subject to (16)-(18), where
Dt =

h
ct, Nt, n0t, {αjt}J−1j=1 , {θj+1,t+1}J−1j=0

i
.

The solution to this problem will satisfy the constraints above with equality and a series

of efficiency conditions that follow. First, the standard conditions apply to the choice of

household consumption and labor supply,

λt = D1u(ct, 1−Nt)

wtλt = D2u(ct, 1−Nt).

From these two equations, it is clear that the output price, pt, and the real wage, wt, faced

by establishments in the decentralized economy examined above must correspond to the

multipliers λt and wt, respectively, if the competitive allocation is to match that obtained

here.

Note that the multipliers sjt attached to the distributional constraints in (19) represent

date t post-production valuations of establishments that will enter the next date in plant

group j + 1. To clarify the equivalence between the planning allocation and that in the

decentralized economy, we define the pre-production valuations of establishments as:

vjt ≡ f(njt, zt)− wtnjt + sjt, for j = 0, ..., J − 1,

and we use these, rather than the original multipliers, in representing the optimal adjust-

ment fractions. Efficiency with respect to the choice of αjt requires that the solution to

this problem satisfy

G−1(αjt) = v0t − vjt,
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so that it is just worthwhile to relocate the marginal plant with cost ξjt into the adjustment

group, and plants with costs greater than this threshold are not adjusted. This determines

αjt, j = 1, . . . , J − 1, and is equivalent to (4) provided the multipliers vjt attain the same
value as before. That this is the case may be seen from the efficiency conditions with

respect to θj+1,t+1, j = 0, . . . , J − 1, which imply that the value associated with a plant
with employment level njt satisfies

vjt = f(njt, zt)− wtnjt + βE
hλt+1
λt

³
αj+1,t+1v0,t+1 − Γ(αj+1,t+1)

+ (1− αj+1,t+1) vj+1,t+1

´
| θt,nt, zt

i
.

These expressions are equivalent to the plant Bellman equations of section 4, since the

expected adjustment cost conditional on adjustment in (7) is equal to Γ (αj+1,t+1), the

average cost paid by adjusting plants, by definition of Γ (·). Finally, the efficiency condition
with respect to the choice of n0t may be expressed as (11)-(12), provided pt = λt at every

date. Therefore, the solution to the planning problem, given the aggregate state (θt,nt, zt),

is the same as in the decentralized economy of the previous section.

5 Numerical examples

We use a series of numerical examples to illustrate several interesting properties of the

model developed above, and to compare its dynamics to those of the traditional model.

We begin with an examination of the model assuming that prices, wages and interest rates

are exogenously fixed, as is commonly the case in analyses using the traditional partial

adjustment model. Our examples involve functional forms and parameter values that are

standard; production at the plant level is described by a Cobb-Douglas production function

f(n, z) = znν with ν = 0.66. Total factor productivity has a mean of 1 and follows a first-

order autoregressive process with a one-period autocorrelation of 0.9225, roughly consistent

with the annual properties of the Solow Residual. The plant’s discount factor is β = 0.939,

which corresponds to an annual interest rate of 0.065.21

The remaining parameter values are chosen arbitrarily; however, extensive sensitivity

analysis has confirmed that the properties of the model we have developed are not highly

sensitive to variation in these parameters. First, we assume that the distribution of ad-

justment costs is uniform with an upper support of 0.008. This yields a distribution of

employment across plants that is suitable for illustrating the generalized partial adjustment
21These values will be familiar to quantitative researchers; see, for example, King and Rebelo (1999).
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model’s properties. Next, for the traditional model, we assume the quadratic cost para-

meter is B = 4. This choice facilitates comparison, as it yields a dynamic response that

is relatively close to our generalized partial adjustment model with adjustment rates held

constant. Finally, we assume a separation rate of d = 0.06 and a wage rate of w = 1.14.

5.1 The five stylized facts

We have developed a model that is designed to be consistent with stylized facts 1 and

5 of section 3. Specifically, due to fixed costs of adjustment, labor changes at the plant level

are discrete and occasional in the model. Moreover, since the distribution of adjustment

costs is assumed to be constant over time, it cannot be the source of aggregate fluctuations.

Fluctuations must arise through aggregate shocks as suggested by previous empirical work.

The stationary distribution of plants, shown in our first figure, demonstrates the model’s

ability to reproduce stylized fact 4: adjustment probabilities depend on plants’ gaps be-

tween actual and target employment. There, we see that adjustment fractions are an

increasing function of the time since last adjustment, as the cost of non-adjustment rises

with the distance from the target, while the distribution of adjustment costs is identical

across groups. Thus, in the second panel of the figure, the distribution of plants across

groups is necessarily downward sloping, given the law of motion for θ in (14).

Figure 2 illustrates stylized fact 2: aggregate employment is characterized by smooth

and gradual adjustment. Panels (a) and (b) show percentage deviations in market em-

ployment and output from their steady state values, in response to a persistent rise in

aggregate productivity, for the three models discussed above. PA corresponds to the tradi-

tional partial adjustment model of section 2, where staggered aggregate adjustment arises

from the presence of quadratic adjustment costs, while TD represents the response for the

generalized model with a fixed vector of time-dependent adjustment fractions correspond-

ing to figure 1. Finally, SD denotes the response in the generalized state-dependent partial

adjustment model. There, fixed costs of adjustment dissuade some production units from

responding immediately to the rise in productivity. This protracts the aggregate response

in employment, and hence output, so that both TD and SD share the humped shape char-

acteristic of the traditional partial adjustment model. This is absent in a frictionless model

of employment adjustment, where the shape of the response follows the autoregressive

productivity process.

The TD model, with an upward sloping but time-invariant adjustment hazard, matches

the traditional partial adjustment model closely. Only at the earliest date of the response
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does the traditional model move more gradually, due to the rising marginal cost of ag-

gregate employment changes. The size of this initial difference in employment response is

nonetheless only about two-thirds of 1 percent. This is in part because plants in the time-

dependent adjustment model are not permitted to alter the timing of their employment

adjustments in response to shocks, so that all rises in aggregate employment must come

from changes in target employment. Moreover, the onset of diminishing returns at the

level of the production unit restrains the rise in the employment levels chosen by current

adjustors.

While the state-dependent adjustment model shares similar qualitative features with

the other staggered adjustment models, the ability of establishments to alter the timing of

their employment adjustments at relatively low cost produces two potentially important

changes in the market response. First, because aggregate employment is increased through

changes in both intensive and extensive margin adjustment, SD produces a substantially

larger rise in employment, and hence output, which distinguishes it from the traditional

model during the initial dates following the shock. Second, the SD model has the ability

to produce more complicated cyclical adjustment patterns; in each panel, its response

oscillates slightly above and below that of the traditional model. As neither of these

features is present when adjustment rates are held fixed, it is apparent that they arise from

changes in adjustment timing at the micro-level.

Figure 3 verifies the importance of the time-varying adjustment hazards by displaying

the SD responses in each of the two margins through which aggregate employment is raised.

Panel (a) depicts percent changes in extensive margin adjustment through changes in the

fraction of production units adjusting, ω0t =
JP

j=1
θjtαjt, while panel (b) displays intensive

margin changes through the employment levels chosen by current adjustors, n0t. Given the

persistent nature of the productivity shock, the rewards to early adjustment are expected

to be large, thus raising the threshold costs above which adjustment is rejected within each

time-since-adjustment group. As a result, adjustment fractions rise across groups, and the

number of adjustors in the economy rises 25 percent above its steady state value. This

illustrates that stylized fact 3 is reproduced by our generalized partial adjustment model:

adjustment rates vary with aggregate conditions. Further, note that the percent rise in

target employment per adjusting unit is considerably smaller than that in the number of

adjustors. Large increases in individual employments are not worthwhile given decreasing

returns in establishment-level production. Thus, in the early dates corresponding to the

largest movements in aggregate employment, changes in the numbers of adjusting plants
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are more important than are changes in the employment chosen by such plants. Moreover,

panel (a) demonstrates that it is these extensive margin changes that are responsible for

the oscillatory response of the aggregate series in figure 2.

The large rise in the number of adjustors at the impact of the shock causes a large shift

in the distribution of production units away from higher time-since-adjustment groups

and into group 1 starting the next period. Given upward-sloping adjustment hazards,

only a small fraction of these plants adjust again, so many begin the subsequent date

in group 2. In this way, the effects of early rises in adjustment rates filter out through

subsequent distributions, reducing total adjustment toward trend, then below it once a

disproportionate fraction of the population finds its way into time-since-adjustment groups

associated with low adjustment fractions. Eventually, the mass of early adjustors works

its way sufficiently far out the distribution, where adjustment rates are relatively high, so

that total adjustment returns above trend, and the pattern repeats in a dampened fashion.

While illustrative, the response in the total number of adjustors from figure 3 does

not fully summarize the effects of changes in adjustment rates on the generalized model’s

aggregate response, as it fails to reflect the employment levels from which individual units

are adjusting. A more complete accounting in provided by figure 4. There, we aggregate

the effects of changes in intensive margin versus extensive margin adjustment to provide a

decomposition of the market employment response into two underlying components. The

first component summarizes nj-effects associated with changes in employment levels across

groups (due to changes in target employments). The second summarizes ωj-effects arising

from changes in the distribution of plants across these groups at the time of production,

ωjt ≡ (1 − αjt)θjt, j = 1, ..., J , (due to changes in the fractions adjusting from each

group). Specifically, at each date, the percentage deviation from steady state in aggregate

employment is given by

bnt =
⎡⎣J−1X
j=0

³ωjnj
n

´ bnjt
⎤⎦+

⎡⎣J−1X
j=0

³ωjnj
n

´ bωjt
⎤⎦ ,

where each
¡ωjnj

n

¢
reflects the percentage contribution of the jth group to aggregate em-

ployment in steady state, and each bnjt and bωjt represent percent deviations from trend in

the group j employment and population levels, respectively, at the time of production in

date t.

At the onset of the shock, rises in employment associated with current adjustors, n0t,

contribute less than half of the percentage rise in the aggregate series. The remainder is due

to a rise in the adjustment group, ω0, associated with this high target and corresponding
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reductions in the populations of groups associated with lower employment levels. In the

following date, adjusting plants again select a high target employment level, and this is

compounded by a rise in the employment held by members of group 1, a consequence

of the high employment choice of the previous period. These effects of raised targets

continue to feed through the distribution, raising the employment levels associated with

each subsequent group, for a number of periods. As a result, the nj component of aggregate

employment exhibits the smooth humped shape associated with partial-adjustment. The

aggregate series inherits this shape to an extent, but it is both more pronounced in its

rise and less smooth in its return to trend, due to the ωj effects arising from changes in

the distribution of plants across groups. High adjustment fractions amplify the aggregate

response initially; however, by date 3, when the number of adjustors begins to fall below

trend, an increasing fraction of production units operates with relatively low employment

levels. This dampens the rise in the aggregate series, then speeds its initial decline, relative

to that of the nj component. Further, just as the disruption in the population distribution

produced oscillations in the total adjustors series of figure 3, it also causes overshooting in

the ωj component’s response, thereby generating the slight oscillations in the responses of

the aggregate series.

We conclude this section with a summary of our main numerical findings thus far.

We have seen that our market employment results are consistent with the findings of

previous empirical studies (e.g., Caballero and Engel (1993)) in two important respects.

First, despite its equivalence to a model with a flat, time-invariant adjustment hazard,

the traditional partial adjustment model can approximate the dynamics of our generalized

adjustment model relatively well over long samples, since the aggregate series in PA and

SD are close over all dates other than in initial episodes following aggregate disturbances.

However, second, because the dynamic response of the traditional model tends to be more

gradual, its match is poorer in those dates immediately subsequent to aggregate shocks.

Our decomposition of the SD response above explains both findings. First, the similarity

between the two models’ dynamics over long horizons arises from the presence of a nontrivial

adjustment hazard in our model. Although target employment exhibits monotone responses

to shocks, individual units’ adoption of the target is staggered according to the hazard,

which delivers the hump-shaped component underlying our model’s market employment

responses. This component is characteristic of a traditional partial adjustment response,

and it is dominant over most dates. Second, in the early dates following shocks, the

traditional model’s failure to keep pace with the generalized model does not arise from the

flatness of its adjustment hazard, but rather from its time-invariance. In these dates, a
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second component summarizing the effects of movements in the adjustment hazard becomes

important in the SD model. This component amplifies its market employment response

relative to both the traditional model and the time-dependent adjustment model, where

responses are quite similar despite the fact that the TD hazard is not flat, but upward-

sloping. Thus, it is our generalized model’s consistency with stylized fact 3 (the dependence

of adjustment hazards on aggregate conditions) that distinguishes its employment dynamics

relative to both the traditional partial adjustment model and the time-dependent model

over such episodes.

5.2 General equilibrium effects

One of the key features of our approach is that discrete micro-level adjustment dy-

namics can be readily introduced into a general equilibrium setting. So far, we have used

the dynamic model to study the influence of variations in productivity on aggregate labor

demand and the adjustment decisions of individual units, holding the real wage rate and

the real interest rate fixed. The dynamics of a general equilibrium model are more com-

plicated. For example, when a rise in productivity increases labor demand, the resulting

wage changes will have implications for both the target employment that adjusting estab-

lishments select and the fractions of establishments that choose to adjust from each current

employment to this target. In this section, we examine the dynamics of our model in gen-

eral equilibrium, assuming a particular functional form for the representative household’s

preferences so as to generate restrictions on the behavior of the wage rate and the interest

rate.22 While our equilibrium analysis is designed to be very simple, it illustrates some

important points.

Figure 5 compares the dynamic general equilibrium response to an aggregate productiv-

ity shock within the state-dependent generalized adjustment model to the response arising

without market-clearing variations in wages and interest rates. Quantitatively, as might be

expected, equilibrium price movements sharply dampen the response in employment, and

hence output, to a persistent change in productivity. However, in contrast to the invest-

ment analysis of Thomas (2002), equilibrium does not eliminate the influence of costly and

22 In particular, maintaining the functional forms and parameter values assumed above, we assume that
the representative household’s momentary utility function is U (C,N) = log C − χN1+γ

1+γ
, where χ = 2.55

and γ = 0.50. This specification implies that there is a steady-state level of labor of n = 0.20 and a
general equilibrium labor supply elasticity of γ−1 = 2 with respect to the real wage rate. Higher values of
γ would imply sharper differences between the equilibrium and fixed price models, as these would raise the
responsiveness of the wage to changes in employment demand.

21



discrete adjustment. In particular, the level of employment continues to display a hump

in the dynamic response due to these costs, which is also an implication of the standard

partial adjustment model discussed in section 2 above.

There are also qualitative changes in both the extensive and intensive margins of em-

ployment adjustment with equilibrium movements in wages and interest rates. First, the

previous nonmonotonicity in the fraction of units adjusting essentially disappears. This is

because equilibrium price changes offset much of the large rise in target employment that

would otherwise occur at the impact of the shock. With the rise in target employment

dampened, establishments have less incentive to pay fixed costs to move up the timing of

their employment adjustments. Thus, equilibrium reduces the jump in the total fraction

adjusting, thereby reducing the disruptions to current and future plant distributions that

cause these oscillations. Second, the smooth mean reversion in target employment becomes

less regular. Nonetheless, target employment continues to be monotonic, and it is the stag-

gered individual responses associated with the model’s nontrivial adjustment hazard that

produce the hump-shaped aspects of the aggregate quantity responses. More establish-

ments do choose to adjust employment when there is a favorable productivity shock, but

they do not all adjust immediately.

In closing our discussion of numerical examples, we revisit the comparison of employ-

ment and output responses from figure 2, displaying their general equilibrium counterparts

in figure 6. In most respects, the remarks concluding section 5.1 continue to apply. Here,

however, the differences across models are slightly less pronounced. First, although gen-

eral equilibrium dampens responses in all three models, its effect on the state-dependent

adjustment model is strongest. This is because equilibrium price changes reduce incentives

for the changes in adjustment timing that distinguish SD from the other models. Thus, in

the dates associated with the largest aggregate changes, the traditional model now bears a

closer resemblance to the generalized model than it did in figure 2. Moreover, given smaller

changes in adjustment rates, the distributional effects in our model are now shorter-lived,

so its employment and output responses coincide with those of the fixed hazard models

more quickly. Thus, the traditional model’s ability to proxy for the aggregate response in

our richer adjustment model improves somewhat in general equilibrium.

6 Persistent idiosyncratic shocks

To this point, plants have been differentiated only by (i) different realizations of ad-

justment costs and (ii) different values of the labor stock that they bring into the period.
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However, there is ample evidence that establishments are affected by additional persistent

plant-level states, such as stochastic variations in productivity. In this section, we demon-

strate that our generalized partial adjustment model is tractably extended to allow for

persistent idiosyncratic productivity shocks, thus allowing equilibrium analysis in the pres-

ence of the richer heterogeneity essential for matching other aspects of the microeconomic

data on factor adjustment. Moreover, the same approach can be applied to other persis-

tent exogenous individual states, such as variations in product demand for monopolistic

competitors or shifts in the distribution of adjustment costs. Thus, with the extension

outlined in this section, our framework can be applied to the many economic settings where

discrete choice appears alongside persistent stochastic sources of heterogeneity.

Here, we assume that plant-specific productivity shocks follow an M -state Markov

process; a ∈ {a1, . . . , aM} with transition probabilities given by the time-invariant matrix
Φ; specifically, the probability of transiting from state al to state am is given by φ(l,m),

for l = 1, ...,M and m = 1, ...,M . This otherwise straightforward extension to our model

requires some additional accounting. Thus, we begin by defining notation suitable for

describing the joint distribution of establishments over employment and productivity at

each date. Next, we show how the aggregation is handled, and then proceed to outline

the associated planning problem. For brevity, we omit the corresponding decentralized

representation of the economy, although the mapping should be transparent by comparison

to section 4 above.

At the start of date t, any establishment is identified by its current productivity draw, a,

and its current employment level. We continue to assume that, when not actively adjusted,

a plant’s employment declines at rate d across dates and that active stock adjustments incur

a fixed cost, ξ, drawn from the time-invariant distribution G(ξ). Given the effect of current

plant-specific productivity draws on adjustment decisions and on the target employments

selected by current adjustors (and hence on future distributions), the economy’s aggregate

state, S, will now include M2 +M time-since-adjustment vectors that together describe

the current start-of-period distribution of establishments over labor and productivity.

Given this structure, we can use linear approximation to solve our economy if we simply

track the distribution of plants according to membership in groups identified by (i) time-

since-last adjustment, (ii) productivity draw at the date of last adjustment, and (iii) current

productivity draw. As before, employment selected by adjusting establishments does not

depend upon the current stock. However, it does depend upon current productivity, given

the persistence in this individual state variable.

To study the evolution of plant-level conditions, for each h and each l, we define θjt(h, l)
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as the start-of-date measure of plants that last adjusted j periods in the past to a target

employment consistent with ah, their productivity at the time of the adjustment, and that

have current productivity level al. Let αjt(h, l) denote the corresponding fractions of each

of these groups undertaking active employment adjustment in date t. While adjustment

fractions reach 1 within some finite number of periods, the full adjustment horizons for

plants now depend upon the productivity they had when they last actively changed their

employment and on their current productivity. Let J(h, l) denote the full adjustment hori-

zon associated with plants that had productivity ah at the time of last adjustment and have

current productivity al.23 Because establishments transit across productivities from date

to date, each vector θt(h, l) = [θjt(h, l)] will have length Jh ≡ max{J(h, 1), ...J(h,M)}.
Finally, each of these vectors is associated with the vector of start-of-date employment

levels nt(h) = [njt(h)] of length Jh.24

6.1 Aggregation

The evolution of the plant distribution may be summarized as follows. First, there

are M2 equations representing the fractions of establishments that are current adjustors

and hence will begin the next period with time-since-last adjustment 1. One such equation

holds for each current productivity, l = 1, ...,M , and for each next-period productivity,m =

1, ...,M . Each represents the fraction of all establishments that have current productivity

al and adjust from their start of period employment level to the associated target n0t(l),

and that will then enter next period identified by (n1,t+1(l), am):

θ1,t+1(l,m) = φ(l,m)
MX
h=1

³ JhX
j=1

θjt(h, l)αjt(h, l)
´
. (20)

Next, there are M2 sets of equations describing the non-adjusting population. Each set

is identified by a particular (past, current) productivity combination, and each contains

23As with J in the model above, the horizons here, J(h, l), are endogenous variables recovered in the
solution for the economy’s steady state. One cost of pursuing a linear systems solution for the dynamics
is that we must assume that the economy stays sufficiently local to the steady state that these horizons are
impervious to aggregate shocks. To know whether this assumption is reasonable in a given application,
one must verify that all endogenous adjustment fractions remain strictly in the (0, 1) interval at every date
over long simulations.
24For example, in the case of a 2-state Markov shock, the start-of-date plant distribution over employment

and productivities is summarized by four θ vectors and two n vectors: θt(1, 1) and θt(1, 2), each of length
J1 ≡ max{J(1, 1), J(1, 2)}; θt(2, 1) and θt(2, 2), each of length J2 ≡ max{J(2, 1), J(2, 2)}; nt(1) of length
J1; nt(2) of length J2.
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Jh − 1 separate equations, one for each possible time-since-last-adjustment. Specifically,
each equation isolates the fraction of all plants that had productivity ah, h ∈ {1, ...,M},
at the time of their last adjustment j periods in the past, do not adjust this period, and

then draw random productivity am, m ∈ {1, ...,M}, at the start of the next period. This
represents the number of plants that produce with employment njt(h) in the current period

and then enter the next period identified by (nj+1,t+1(l), am):

θj+1,t+1(h,m) =
MX
l=1

θjt(h, l)[1− αjt(h, l)]φ(l,m) for j = 1, ..., Jh − 1. (21)

Finally, there are M sets of equations describing future employments of those that had

productivity ah, h ∈ {1, ...,M}, at the time of their last adjustment:

nj+1,t+1(h) = (1− d)njt(h) for j = 0, ..., Jh − 1. (22)

Equations (23) - (26) describe aggregate output gross of adjustment costs, aggregate

labor demand and total adjustment costs in the economy. Aggregate output is total

production across all establishments, which are grouped into two broad categories in equa-

tion (23). First, there are those plants with each current productivity {al}Ml=1 that adjust
to the target employment consistent with their productivity. Next, there are those with

each current productivity al that do not adjust, but instead produce with the employment

consistent with their productivity {ah}Mh=1 from the time they last did so.

Yt =
MX
l=1

h
f
³
n0t(l), al, zt

´ MX
h=1

J(h,l)X
j=1

θjt(h, l)αjt(h, l)
i

(23)

+
MX
l=1

MX
h=1

hJ(h,l)−1X
j=1

f
³
njt(h), al, zt

´
θjt(h, l)[1− αjt(h, l)]

i
Total employment demand is an analogous sum of the employments of adjusting and non-

adjusting establishments:

ND
t =

MX
l=1

h
n0t(l)

MX
h=1

J(h,l)X
j=1

θjt(h, l)αjt(h, l)
i

(24)

+
MX
l=1

MX
h=1

hJ(h,l)−1X
j=1

njt(h)θjt(h, l)[1− αjt(h, l)]
i
.
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Finally, economy-wide adjustment costs are the aggregate of those paid by establishments

of each time-since-adjustment age that last adjusted to an employment consistent with

productivity ah and now have productivity al, again summing across past and current

productivity levels,

Qt =
MX
l=1

MX
h=1

J(h,l)X
j=1

θjt(h, l)Γ
³
αjt(h, l)

´
, (25)

where each Γ(α) in (25) represents the average adjustment cost paid per member in a given

group, conditional on adjustment fraction α from that group,

Γ(α) ≡
Z G−1(α)

0
xg(x). (26)

6.2 Planning problem

The planning problem for the generalized partial adjustment model with persistent

plant-specific productivities is straightforward given our aggregation above. Here, the

aggregate state vector includes the M2+M vectors that together describe the current dis-

tribution of establishments over employment and productivity, alongside current exogenous

aggregate productivity, z: St ≡
h
[θt(h, l)]

M
h,l=1, [nt(h)]

M
h=1, zt

i
. The planner solves

W (St) = max
Dt

³
u(ct, 1−Nt) + βEW (St+1|St) + λt[Yt −Qt − ct] + wtλt[Nt −ND

t ]
´
, (27)

subject to (20) - (26), where

Dt =

(
ct, Nt, [n0t(l)]

M
l=1,

h
[αjt(h, l)]

J(h,l)−1
j=1

iM
h,l=1

,
h
[θj+1,t+1(h, l)]

J(h,l)−1
j=0

iM
h,l=1

)
.

The solution to this problem satisfies (20) - (26) and the constraints in (27) with equality,

as well as a series of efficiency conditions that, after some algebra, may be written as follow.

First, aggregate consumption and labor supply satisfy

λt = D1u(ct, 1−Nt)

wtλt = D2u(ct, 1−Nt).

Next, we describe the conditions determining target employments. For each plant-

specific productivity level al, define ω0t(l) to be the total establishments that currently

have this productivity and adjust their employment;

ω0t(l) ≡
MX
h=1

J(h,l)X
j=1

θjt(h, l)αjt(h, l), for l = 1, ...,M .
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The conditions identifying the optimal employment levels for each of these groups of ad-

justing establishments may then be written recursively as below in the
MP
h=1

Jh equations of

(28) - (29). For l = 1, ...,M :h
D1f

³
n0t(l), al, zt

´
−wt

i
+ β(1− d)E

µ
λt+1
λt

Ω1,t+1(l)

ω0t(l)
| St

¶
= 0, (28)

where, for each h = 1, ...,M,

Ωjt(h) ≡
MX
l=1

θjt(h, l)[1− αjt(h, l)]
h
D1f

³
(1− d)jn0t(h), al, zt

´
−wt

i
(29)

+β(1− d)E

µ
λt+1
λt
Ωj+1,t+1(h) | St

¶
, for j = 1, ..., Jh − 1.

These conditions closely parallel those in the model without plant-level productivity shocks.

As there, the marginal effects of the current employment choice on future production and

wage payments continue for as long as a plant does not re-adjust. The second term in

(28) reflects the probability-weighted sum of future effects for any member of the ω0t(l)

group of adjusting plants. Any such plant may enter date t + 1 with productivity a1 and

produce without readjusting its employment with probability θ1,t+1(l,1)
ω0t(l)

[1−α1,t+1(l, 1)]; with
probability θ1,t+1(l,2)

ω0t(l)
[1 − α1,t+1(l, 2)], it will have productivity a2 and not adjust, and so

forth. The collections of equations in (29) summarize the resulting marginal effects from

t + 1 and forward until date t + Jl, the date by which the currently adjusting plant will

re-adjust its employment with certainty if it has not already done so.

The conditions (30) determining optimal adjustment fractions from within each group of

plants are also analogous to those in section 4. Within each group that had productivity ah
at the time of last adjustment, h ∈ {1, ...,M}, and now have productivity al, l ∈ {1, ...,M},
the fraction adjusting from each time-since-last-adjustment subgroup will satisfy

ξ
³
αjt(h, l)

´
= v0t(l)− vjt(h, l) for j = 1, ..., J(h, l)− 1, (30)

where ξ(α) ≡ G−1(α). Each adjustment fraction equates the marginal cost paid to adjust
the last plant from a given group to the net value of moving that plant into the adjustment

group associated with its current productivity, given the production-time values of each

plant type expressed recursively below.
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The value of any adjusting plant with current productivity al is, for each l = 1, ...,M :

v0t(l) =
h
f
³
n0t(l), al, zt

´
− wtn0t(l)

i
+ βE

"
λt+1
λt

MX
m=1

φ(l,m)

µ
α1,t+1(l,m)v0,t+1(m)

+[1− α1,t+1(l,m)]v1,t+1(l,m)− Γ
³
α1,t+1(l,m)

´¶
| St

#
.

This includes the plant’s current profit associated with (n0t(l), al) at production time and

its discounted probability-weighted continuation value. (For example, at date t + 1, the

plant will draw productivity a2 with probability φ(l, 2). In that case, its expected fixed

cost payment will be Γ
³
α1,t+1(l, 2)

´
, and it will produce with either the target employment

n0,t+1(2) with probability α1,t+1(l, 2) or n1,t+1(l) with probability 1 − α1,t+1(l, 2).) Next

are the values associated with units that do not adjust. For each (h, l) productivity pair,

and for each j = 1, ..., J(h, l)−1, the value of a nonadjusting plant identified by (njt(h), al)
at production time in date t is

vjt(h, l) =
h
f
³
njt(h), al, zt

´
− wtnjt(h)

i
+ βE

"
λt+1
λt

MX
m=1

φ(l,m)

µ
αj+1,t+1(h,m)v0,t+1(m)

+[1− αj+1,t+1(h,m)]vj+1,t+1(h,m)− Γ
³
αj+1,t+1(h,m)

´¶
| St

#
.

Given the current aggregate state, St, and the values of J(h, l), the evolution of this

economy is fully described by a system of
h
7+2

MP
h=1

MP
l=1

J(h, l)+(M +2)
MP
h=1

Jh−M2
i
first-

order stochastic difference equations. As a result, the economy’s aggregate dynamics may

be solved as a local approximation around the steady state using standard linear systems

methods. Thus, while extending our framework to allow for additional heterogeneity

such as the plant productivity shocks considered here certainly increases the number of

equations involved, it requires no more complicated solution algorithm than that of the

basic framework lacking these richer elements.

7 Concluding remarks

In the preceding sections, we have developed a new partial adjustment model for labor

demand that can be employed without apology for its microeconomic implications and is

tractable for dynamic general equilibrium analysis. Our generalized partial adjustment
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model is consistent with 5 stylized facts: (1) employment adjustment at the establishment

is discrete and occasional, (2) aggregate employment is smooth and gradual, (3) individual

plants’ probabilities of adjustment vary over time in response to aggregate conditions, (4)

these adjustment probabilities are functions of the difference between plants’ actual and

target employment and (5) movements in aggregate employment are largely driven by

movements in aggregate factors.

The last stylized fact has led us to focus our quantitative examples on situations where

idiosyncratic uncertainty at the plant level is transitory, and there are no additional sources

of heterogeneity. Existing empirical research suggests that such factors are of secondary

importance in explaining movements in aggregate employment. A benefit to our abstrac-

tion is that we are able to develop a generalized (S, s) model of establishment-level labor

adjustment that rationalizes existing empirical work which has heretofore assumed state-

dependent adjustment hazards. Moreover, we have shown that our method allows con-

venient aggregation of the discrete adjustment actions of a heterogeneous distribution of

production units into a planning problem.

Using our generalized partial adjustment model, we have analyzed the dynamics of

employment under two alternative assumptions about the wage rate and interest rate. We

began by assuming that both prices were fixed, while productivity fluctuated exogenously.

Next, we considered a simple general equilibrium formulation in which these prices were en-

dogenously determined and hence varied with changes in productivity. The dynamics under

these two formulations are quite distinct, and they lead to somewhat different conclusions

about how well the aggregate dynamics of our model are approximated by the traditional

partial adjustment model. Previous research in this area has been conducted almost ex-

clusively under the assumption of exogenous prices, given the complications presented by

nontrivial heterogeneity in production. An important contribution of our approach lies in

its ability to limit such complications, thereby facilitating general equilibrium analysis.

Finally, while we have chosen to abstract from additional sources of plant-level hetero-

geneity in the numerical examples here, pending a detailed calibration exercise, we have

shown how the addition of persistent plant-specific shocks is a straightforward extension of

our current framework. Thus, we have provided a tractable basis for future research into

the dynamics of factor adjustment and, indeed, other questions where discrete individual

decisions interact with persistent stochastic sources of heterogeneity.
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